Solvent is more than a solute. Like salt water. Water is the solvent and salt will be the solute
The standard atomic weight is the average mass of an element in atomic mass units ("amu"). Though individual atoms always have an integer number of atomic mass units, the atomic mass on the periodic table is stated as a decimal number because it is an average of the various isotopes of an element.
Answer : The energy removed must be, 29.4 kJ
Explanation :
The process involved in this problem are :

The expression used will be:
![Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{fusion}]+[m\times c_{p,s}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=Q%3D%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2B%5Bm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%5D%2B%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released for the reaction = ?
m = mass of benzene = 94.4 g
= specific heat of solid benzene = 
= specific heat of liquid benzene = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![Q=[94.4g\times 1.73J/g.K\times (279-322)K]+[94.4g\times -125.6J/g]+[94.4g\times 1.51J/g.K\times (205-279)K]](https://tex.z-dn.net/?f=Q%3D%5B94.4g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28279-322%29K%5D%2B%5B94.4g%5Ctimes%20-125.6J%2Fg%5D%2B%5B94.4g%5Ctimes%201.51J%2Fg.K%5Ctimes%20%28205-279%29K%5D)

Negative sign indicates that the heat is removed from the system.
Therefore, the energy removed must be, 29.4 kJ
B, the opposing forces are the same, thus, the ball doesn't move back or forward.
Density = (mass) / (volume)
Density = (17.0 g) / (25.3 cm³) = 0.672 gm per cm³. (rounded)