Hi there!
p = e-3
s = f-1
f = i-7
d = g-5
Hope that helps!
Brady
Hey there!:
Number of moles:
Molar Mass Al = 26.98 g/mol
n = mass / molar mass
n = 9.0 / 26.98
n = 0.3336 moles of Al
Given the reaction :
2 Al + Fe2O3 = Al2O3 + 2 Fe
From the equation, 2 moles of Al give off 849 kJ of heat :
Actual heat given off :
0.3336 / 2 * 849 =
0.3336 / 1698 = 1.4*10² Kj
Hope that helps!
Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
Answer:
Q = 1379.4 J
Explanation:
Given data:
Mass of water = 22 g
Initial temperature = 18°C
Final temperature = 33°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.
°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 18 °C
ΔT = 15°C
Q = 522 g ×4.18 J/g.°C× 15°C
Q = 1379.4 J