Answer:
B
Explanation:
As the distance between the planets and the sun increases, the period of revolution increases as well. The period of revolution is how long it takes for a planet to revolve around the sun. So, because the planets farther from the sun have a higher period of revolution in earth years, this also means they have longer actual years, which means the answer is B.
Answer:
c = 0.13 j/ g.°C
Explanation:
Given data:
Mass of mercury = 29.5 g
Initial temperature = 32°C
Final temperature = 161°C
Heat absorbed = 499.2 j
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 161°C - 32°C
ΔT = 129 °C
Q = m.c. ΔT
c = Q / m. ΔT
c = 499.2 j / 29.5 g. 129 °C
c = 499.2 j / 3805.5 g. °C
c = 0.13 j/ g.°C
<span>D. It shows that the electrons within an atom do not have sharp boundaries.</span>
Answer:
Military
Explanation:
I may be wrong but military seems most likely
Answer:
2H₂ + O₂ → 2H₂O
Explanation:
Chemical equation:
H₂ + O₂ → H₂O
Balance chemical equation:
2H₂ + O₂ → 2H₂O
Step 1:
H₂ + O₂ → H₂O
Left hand side Right hand side
H = 2 H = 2
O = 2 O = 1
Step 2:
H₂ + O₂ → 2H₂O
Left hand side Right hand side
H = 2 H = 4
O = 2 O = 2
Step 3:
2H₂ + O₂ → 2H₂O
Left hand side Right hand side
H = 4 H = 4
O = 2 O = 2