Answer:

Explanation:
Hello!
In this case, since the molarity of magnesium chloride (molar mass = 95.211 g/mol) is 1.672 mol/L and we know the density of the solution, we can first compute the concentration in g/L as shown below:
![[MgCl_2]=1.672\frac{molMgCl_2}{L}*\frac{95.211gMgCl_2}{1molMgCl_2}=159.2\frac{gMgCl_2}{L}](https://tex.z-dn.net/?f=%5BMgCl_2%5D%3D1.672%5Cfrac%7BmolMgCl_2%7D%7BL%7D%2A%5Cfrac%7B95.211gMgCl_2%7D%7B1molMgCl_2%7D%3D159.2%5Cfrac%7BgMgCl_2%7D%7BL%7D)
Next, since the density of the solution is 1.137 g/mL, we can compute the concentration in g/g as shown below:
![[MgCl_2]=159.2\frac{gMgCl_2}{L}*\frac{1L}{1000mL}*\frac{1mL}{1.137g}=0.14](https://tex.z-dn.net/?f=%5BMgCl_2%5D%3D159.2%5Cfrac%7BgMgCl_2%7D%7BL%7D%2A%5Cfrac%7B1L%7D%7B1000mL%7D%2A%5Cfrac%7B1mL%7D%7B1.137g%7D%3D0.14)
Which is also the by-mass fraction and in percent it turns out:

Best regards!
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
The answer is a conjugate acid.
False. only valence electrons can bond with other atoms' electrons.
Answer:
Blue, orange and green
Explanation:
Three different colors are observed from compounds containing different oxidation states of chromium: +2 (blue), +3 (green), and +6 (orange).