How does it what. i don’t know if there’s a photo but can’t see it
Mol= mass (grams) /Mr
Mr of Sulfuric Acid (H2SO4): 98
mol= 329/98
=3.36 moles
Peroxide is the chemical responsible for opening the hair cuticle
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.
Answer:
They are held together by hydrogen bonds
Explanation:
Hydrogen bonds are special dipole-dipole attractions between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom(oxygen or nitorgen or fluorine).
Such molecules includes water, alkanoic acids, ammonia and amines.
A hydrogen nucleus has a high concentration of positive charge. The bond is actually an electrostatic attraction between the hydrogen atom of one molecule and the electronegative atom(O or N or F).
Hydrogen bonds are very effective in binding molecules into larger units. Most substances that joins with hydrogen bonds have a higher boiling point and lower volatility.
This is why we have a strong intermolecular bond between water molecules.