Answer:
go look for that on google
Explanation:
The answer is potassium. It would be 4, and for neon would be 2. Just total which row of the periodic table you are on. The "L" tells you whether the highest-energy electron is in an "s" orbital (L=0) or a "p" orbital (L=1) or a "d" orbital (L=2) or an "f" orbital (L=3). The way in which these orbitals are filled is: for each of the first three rows (up to argon), two electrons in the "s" orbital are filled first, then 6 electrons in the "p"orbitals. The row where the potassium also starts with filling the "s" orbital at the new "n" level (4) but then goes back to satisfying up the "d" orbitals of n=3 before it seals up the "p"s for n=4.
Answer:
22.25 g
Explanation:
To find the mass, you need to convert moles to grams and get 22.25 g.
<span>Van der waal or ideal eqn is given by PV = NRT; P = NRT/ V.
Where N = 1.335 is the number of moles. T = 272K is temperature. V = 4.920L is the volume. And R = 0.08205L. Substiting the values into the eqn; we have,
P = (1.331* 0.08205 * 272)/ 4.920 = 29.7047/ 4.920 = 6.03atm.</span>
Answer:
C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.
Explanation:
For gas to behave as an ideal gas there are 2 basic assumptions:
- The intermolecular forces (IMF) are neglectable.
- The volume of the gas is neglectable in comparison with the volume of the container.
<em>In which instance is a gas most likely to behave as an ideal gas?</em>
<em>A.) At low temperatures, because the molecules are always far apart.</em> FALSE. At low temperatures, molecules are closer and IMF are more appreciable.
<em>B.) When the molecules are highly polar, because IMF are more likely.</em> FALSE. When IMF are stronger the gas does not behave as an ideal gas.
<em>C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.</em> TRUE.
<em>D.) At high pressures, because the distance between molecules is likely to be small in relation to the size of the molecules.</em> FALSE. At high pressures, the distance between molecules is small and IMF are strong.