An example of accurate but not precise would be 3 people weigh a 10g sample. the weights are 0g, 10g, & 20 grams. the scale is way off but the weights average to the right thing.
precise but not accurate would weighing a 10g sample 3 times and getting 5.5, 5.4, & 5.5. they'e all incredibly similar therefore precise but its nowhere near 10, so not accurate.
neither precise nor accurate would be 3 weights being 10, 20, &30. It averages wrong and is imprecise.
Answer:
kf = 1.16 x 10¹⁸
Explanation:
Step 1: [Ni(H₂O)₆]²⁺ + 1en → [Ni(H₂O)₄(en)]²⁺ ΔG°1 = -42.9 kJmol⁻¹
Step 2: [Ni(H₂O)₄(en)]²⁺ + 1en → [Ni(H₂O)₂(en)₂]²⁺ ΔG°2 = -35.8 kJmol⁻¹
Step 3: [Ni(H₂O)₂(en)₂]²⁺ + 1en → [Ni(en)₃]²⁺ ΔG°3 = -24.3 kJmol⁻¹
________________________________________________________
Overall reaction: [Ni(H₂O)₆]²⁺ + 3en → [Ni(en)₃]²⁺ ΔG°r
ΔG°r = ΔG°1 + ΔG°2 + ΔG°3
ΔG°r = -42.9 - 35.8 - 24.3
ΔG°r = -103.0 kJmol⁻¹
ΔG°r = -RTlnKf
-103,000 Jmol⁻¹ = - 8.31 J.K⁻¹mol⁻¹ x 298 K x lnKf
kf = e ^(-103,000/-8.31x298)
kf = e ^41.59
kf = 1.16 x 10¹⁸
Answer : True
Explanation : When storing parts outside it is best to keep them under tarps or wrapped to stay in compliance is true, because when we store the parts outside the house there are high chances of the parts getting exposed to environmental moisture. Which will develop rust on the parts and make it useless later on. To avoid this situation it is safer to keep it covered under the tarps or wrap it with something which can protect it from moisture.
Answer:
Glass and lens making have improved, and electronic features for microscopes have become available
Explanation:
Answer:
(A) 4.616 * 10⁻⁶ M
(B) 0.576 mg CuSO₄·5H₂O
Explanation:
- The molar weight of CuSO₄·5H₂O is:
63.55 + 32 + 16*4 + 5*(2+16) = 249.55 g/mol
- The molarity of the first solution is:
(0.096 gCuSO₄·5H₂O ÷ 249.55 g/mol) / (0.5 L) = 3.847 * 10⁻⁴ M
The molarity of CuSO₄·5H₂O is the same as the molarity of just CuSO₄.
- Now we use the dilution factor in order to calculate the molarity in the second solution:
(A) 3.847 * 10⁻⁴ M * 6mL/500mL = 4.616 * 10⁻⁶ M
To answer (B), we can calculate the moles of CuSO₄·5H₂O contained in 500 mL of a solution with a concentration of 4.616 * 10⁻⁶ M:
- 4.616 * 10⁻⁶ M * 500 mL = 2.308 * 10⁻³ mmol CuSO₄·5H₂O
- 2.308 * 10⁻³ mmol CuSO₄·5H₂O * 249.55 mg/mmol = 0.576 mg CuSO₄·5H₂O