Answer:
paramagnetic
Explanation:
The complex ion is : [Cr(CN)₆]³⁻
Oxidation state of Cr in [Cr(CN)₆]³⁻ is:
x + (-1)6 = -3
x = +3
CN⁻ is a strong field ligand which can result in pairing of the electrons.
The electronic configuration of Cr is:
1s²2s²2p⁶3s²3p⁶3d⁵4s¹
The electronic configuration of Cr³⁺ is:
1s²2s²2p⁶3s²3p⁶3d³
<u>These 3 electrons will be singly present in the 3 degenerate t₂g orbitals and per Hund's rule, pairing will not occur in the same level energy orbitals. So , no. of unpaired electrons will be 3 and the complex will be paramagnetic.</u>
Water is called a universal solvent because of its ability to dissolve different types of substances.
The basic unit of life is cell and a large portion of living cell (60%) is made up of water, this is because cells need water to survive. Biochemical reactions are always ongoing in the living cells and water act as solvents under which these reactions occur. Because of the high solubility of water, it is able to dissolve various substances needed by the body, this makes it easy for the substance to participate in chemical reactions and to move from one point to another. Without water biochemical reactions will not be able to occur in cells and this will lead to the death of the cells.
We can store the copper sulphate solution in alumiun container, if cover on alumiun is present.
<h3>Can you store cuso4 in an aluminum container?</h3>
Aluminium is more reactive than copper so the Aluminium will displace copper sulphate from its solution by reacting with it but if there is cover on the aluminium then the alumium can't react with copper.
So we can store the copper sulphate solution in alumiun container.
Learn more about container here: brainly.com/question/11459708
A valid Lewis structure of IF3 cannot be drawn without violating the octet rule.
Answer: IF3 (Iodine Trifluoride)
This is because, I (Iodine) and F (Fluorine) both have odd number of valence electrons (7) which also means that there are too many valence electrons in the valence shell.
<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)