A fracture Formation .
A matter is neither destroyed or created
The potential of hydrogen pH of the solution with the given value of pOH to the nearest hundredth is 10.55.
What is pH of solution?
The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration [H+] of the given solution.
It is expressed as;
pH = -log[ H⁺ ]
Also,
pH + pOH = 14
Given that;
We simply substitute our values into the expression above.
pH + pOH = 14
pH + 3.45 = 14
pH = 14 - 3.45
pH = 10.55
Therefore, the potential of hydrogen pH of the solution with the given value of pOH to the nearest hundredth is 10.55.
Learn more about pH & pOH here: brainly.com/question/17144456
#SPJ4
The standard temperature and pressure is 273 K and 1 atm. Since, pressure is not changed we can use Charle's law for the calculations.
<span>Charle's law says "at a constant pressure, the volume of a fixed amount
of gas is directly proportional to its absolute temperature".
V α T
Where V is the volume and T is the temperature
in Kelvin of the gas. We can use this for two situations as,
V</span>₁/T₁ = V₂/T₂<span>
</span>V₁ =
806 mL<span>
T</span>₁ =
26 ⁰C = 299 K
V₂ <span>=
? </span><span>
T</span>₂ =
273 K<span>
<span>
By applying the
formula,
</span></span>(806 mL / 299 K) = (V₂ / 273 K)
V₂ = 735. 91 mL
<span>
Hence, the answer is "a".</span>
The molar mass of copper is 63.55 g/mol. So, you convert grams to moles 127.08/63.55 =1.999 moles copper. Now, 1 mole = 6.022e23 atoms, so multiply # of moles by 6.022e23. 1.999 x 6.022e23= # of atoms of copper.
Answer: A molecule contains hydrogen bonding if it contains hydrogen covalently bonded to (fluorine, oxygen, or nitrogen)
Explanation:
A hydrogen bond is a strong dipole-dipole attraction which occurs between
--> the hydrogen atom attached to a strongly electronegative atom, and
--> another strongly electronegative atom with a lone pair of electrons.
When an electronegative atom such as fluorine, oxygen or Nitrogen is bonded to hydrogen, a dipole develops causing the hydrogen to be partially negative. The electrostatic attraction between the partially positive hydrogen atom in one molecule and the partially negative atom of the more electronegative element in another molecule gives rise to the strong dipole-dipole attraction called hydrogen bonding.
Hydrogen fluoride, water and ammonia contain the three most electronegative elements, fluorine, oxygen and nitrogen respectively, linked directly to hydrogen. In addition, lone pairs of electrons are present in the fluorine, oxygen and nitrogen atoms of the three hydrides, making hydrogen bonds to form easily between them. These compounds which exhibits hydrogen bonding always have higher melting and boiling points.