Answer:
Explanation:
Initial kinetic energy of the system = 1/2 mA v0²
If Vf be the final velocity of both the carts
applying conservation of momentum
final velocity
Vf = mAvo / ( mA +mB)
kinetic energy ( final ) = 1/2 (mA +mB)mA²vo² / ( mA +mB)²
= mA²vo² / 2( mA +mB)
Given 1/2 mA v0² / mA²vo² / 2( mA +mB) = 6
mA v0² x ( mA +mB) / mA²vo² = 6
( mA +mB) / mA = 6
mA + mB = 6 mA
5 mA = mB
mB / mA = 5 .
Answer:
Mass of the car is independent of gravity
Explanation:
Here, we want to state the reason why even though we have the acceleration due to gravity absent on the moon, it is still difficult to accelerate a car on a level horizontal level on the moon.
The answer to this is that the mass of the car that we want to accelerate is independent of gravity.
Had it been that gravity has an effect on the mass of the said car, then we might conclude that it will not be difficult to accelerate the car on a horizontal surface on the moon.
But due to the fact that gravity has no effect on the mass of the car to be accelerated, then the problem we have on earth with accelerating the car is the same problem we will have on the moon if we try to accelerate the car on a horizontal level surface.
This is a problem based on the logic and interpretation of the variables. From the measured data taken
what is collected by the two individuals is expressed as,
- NED reference system: (x, t)
- PAM reference system: (x ', t')
From the reference system we know that ν is the speed of PAM (the other reference system) as a measurement by NED.
Then ν' is the speed of NED (from the other system of the reference) as a measurement by PAM.
Answer:
yea that is very true ◠﹏◠✿
Explanation:
The quicker the speed of an object, the more frequently it is hit by air molecules. this boost in frequency means the molecules push back, increasing the air resistance. If you need more help post a comment so I can help out!