Answer:
Explanation:
acceleration is defined as the rate of change of velocity per unit time. Therefore, acceleration,
where is change in velocity and t is time
Substituting initial and final velocities with 25 m/s and 10 m/s then using time as given in the question of 3 s then
Therefore, the acceleration is
Answer:
r₂ = 0.2 m
Explanation:
given,
distance = 20 m
sound of average whisper = 30 dB
distance moved closer = ?
new frequency = 80 dB
using formula
I₀ = 10⁻¹² W/m²
now,
to hear the whisper sound = 80 dB
we know intensity of sound is inversely proportional to square of distances
r₂ = 0.2 m
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
We are given the equation:
<span>x = 11t^2
</span>
We use that equation to calculate for the distance traveled.
For (a)
At t=2.20 sec,
x =53.24 meters
At t=2.95 sec,
x =95.73 meters
Velocity = (95.73 meters - 53.24<span> meters) / (2.95 s - 2.20 s ) = 56.65 m/s
</span>For (b)
At t=2.20 sec,
x =53.24 meters
At t=2.40 sec,
x =63.36 meters
Velocity = (63.36 meters - 53.24<span> meters) / (2.40 s - 2.20 s ) = 50.6 m/s</span>