Answer:
<em>v=14 m/s</em>
Explanation:
<u>Mechanical Energy
</u>
The kinetic energy of a body (K) is the capacity of doing work due to its speed. It can be expressed as

The potential energy (U) is the capacity of doing work due to its height respect to a certain reference level.

The mechanical energy is the sum of both

The principle of conservation of mechanical energy states it must remain the same if no external force is acting on it. The diver drops from the diving board, which means its initial speed is zero (and so its initial kinetic energy). Thus, the mechanical energy at the jumping time is

When the diver is about to get into the water, his height reaches zero and the speed is at maximum. All the potential energy became kinetic energy, so

Rearranging


The final speed of the diver is

The great astronomer of ancient times who summarized and improved...in a book now called The Almagest) is Ptolemy This is further explained below.
<h3>Who is Ptolemy?</h3>
Generally, Claudius Ptolemy was a Greek mathematician, astronomer, and geographer who lived in the second century CE and is best known for proposing the geocentric model of the cosmos, which was used to explain planetary and stellar movements for the next thousand years.
In conclusion, Ptolemy, the ancient world's preeminent astronomer, compiled and refined a system of circles inside circles to describe the complexities of planetary motion, publishing his work in what is now known as The Almagest.
Read more about Ptolemy
brainly.com/question/15075606
#SPJ1
The goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Explanation:
Consider the vertical motion of ball,
We have equation of motion v = u + at
Initial velocity, u = u sin θ
Final velocity, v = 0 m/s
Acceleration = -g
Substituting
v = u + at
0 = u sin θ - g t

This is the time of flight.
Consider the horizontal motion of ball,
Initial velocity, u = u cos θ
Acceleration, a =0 m/s²
Time,
Substituting
s = ut + 0.5 at²

This is the range.
In this problem
u = 30 m/s
g = 9.81 m/s²
θ = 45° - For maximum range
Substituting

Maximum horizontal distance traveled by ball without touching ground is 45.87 m, which is less than 95 m.
So the goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Answer:
a) The minimum thickness of the oil slick at the spot is 313 nm
b) the minimum thickness be now will be 125 nm
Explanation:
Given the data in the question;
a) The index of refraction of the oil is 1.20. What is the minimum thickness of the oil slick at that spot?
t
= λ/2n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.20
we substitute
t
= 750 / 2(1.20)
t
= 750 / 2.4
t
= 312.5 ≈ 313 nm
Therefore, The minimum thickness of the oil slick at the spot is 313 nm
b)
Suppose the oil had an index of refraction of 1.50. What would the minimum thickness be now?
minimum thickness of the oil slick at the spot will be;
t
= λ/4n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.50
we substitute
t
= 750 / 4(1.50)
t
= 750 / 6
t
= 125 nm
Therefore, the minimum thickness be now will be 125 nm