Answer:
0.23
Explanation:
- It is known that, the mass to mass ratio of the salt to water
= (mass of salt / mass of water)
= (25.0 g / 105.0 g)
= 0.23
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
The answer for the following questions is explained below.
Explanation:
The two variables that affect kinetic energy are:
- mass and
- velocity
- velocity - The faster an object moves,the more the kinetic energy it has.
- mass - Kinetic energy increases as mass increases
The kinetic energy of an object depends on both its mass and its velocity
Kinetic energy increases as mass increases
For example,think about rolling a bowling ball and a golf ball down a bowling lane at same velocity
Here,the bowling ball has more mass than the golf ball
Therefore you use more energy to roll the bowling ball than to roll the golf ball
The bowling ball is more likely to knock down the pins because it has more kinetic energy than the golf ball
Answer:
2nd order.
Explanation:
gras, grasshopper, frog, snake, eagle
Pleas mark branliest if you are satisfied with the answer. Thanking you in anticipation.
Answer:
idk idk but i tried to help