Answer:
0.169
Explanation:
Let's consider the following reaction.
A(g) + 2B(g) ⇄ C(g) + D(g)
We can find the pressures at equilibrium using an ICE chart.
A(g) + 2 B(g) ⇄ C(g) + D(g)
I 1.00 1.00 0 0
C -x -2x +x +x
E 1.00-x 1.00-2x x x
The pressure at equilibrium of C is 0.211 atm, so x = 0.211.
The pressures at equilibrium are:
pA = 1.00-x = 1.00-0.211 = 0.789 atm
pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm
pC = x = 0.211 atm
pD = x = 0.211 atm
The pressure equilibrium constant (Kp) is:
Kp = pC × pD / pA × pB²
Kp = 0.211 × 0.211 / 0.789 × 0.578²
Kp = 0.169
Answer:
a. the 3 represents the principal energy level
Explanation:
3 is the principal energy level. The p is the sublevel. 4 is the possible occupying electron.
Answer:
cools as it rises, then sinks back down
Explanation:
The movement of air is a convection current. Convection currents occur when warm air rises, cools down, and sinks due to gained density, replacing the warm air closer to the ground, creating a cycle.
Throughout the metallic structure allowing the atoms to slide past each other. This sliding is why metals are ductile and malleable. Ioniccompound must break bonds to slide past one another, which causes the ionic material to split and crack.
Let empirical formula for hydrocarbon is CxHy
it will undergo combustion as
CxHy + (x + y/4) O2 ---> xCO2 + (y/2 )H2O
Given that mass of CO2 produced = 9.69 g
So moles of CO2 produced = 9.69 / 44 = 0.22 moles
So moles of carbon present = 0.22 moles
mass of H2O produced = 4.96 g
Moles of H2O produced = mass / molar mass = 4.96 / 18 = 0.28 moles
So moles of H present = 2 X 0.28 = 0.56 moles
Let us divided the moles of each with lowest value of moles
Moles of Carbon = 0.22 / 0.22 = 1 moles
moles of H = 0.56 / 0.22 = 2.55
Multiplying with two to get whole number
the ratio of carbon and hydrogen will be : C:H = 2:5
empirical formula : C2H5