Answer:
Falso
Explanation:
La electrólisis es la descomposición de una solución cuando la corriente continua se pasa a través de ella.
La corriente entra y abandona el electrolito a través de los electrodos. El electrodo positivo se llama el ánodo mientras el electrodo negativo se llama cátodo.
Los iones positivos se mueven hacia el cátodo, mientras que los iones negativos se mueven hacia el ánodo.
Dado que el cloruro es un ion negativo, se mueve hacia el ánodo y no hacia el cátodo.
This is easy… like you can’t take 20 min to search this up in Googl
212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.

So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then, 

So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
long range order
Explanation:
A crystal consists of atoms, ions or molecules having both short range and long range order. The atoms, ions or molecules are arranged in a regular pattern throughout the lattice both at immediate vicinities and across the entire crystal structure.
This order accounts for the definite shape and unique properties of crystals which include their sharp melting and boiling points which distinguishes them from amorphous substances.
Answer:
7.7439×10⁻³¹ m
Explanation:
The expression for Heisenberg uncertainty principle is:

Where m is the mass of the microscopic particle
h is the Planks constant
Δx is the uncertainty in the position
Δv is the uncertainty in the velocity
Given:
mass = 0.68 g = 0.68×10⁻³ kg
Δv = 0.1 m/s
Δx= ?
Applying the above formula as:

<u>Δx = 7.7439×10⁻³¹ m</u>