A sodium chloride is like most of the ionic compounds
existing here on earth in which they are composed of having a high melting
point and by this, if found in underground rock deposits, they are usually in a
form of solid.
NaOH reacts with CH3COOH in 1:1 molar ratio to produce CH3COONa
NaOH + CH3COOH → CH3COONa + H2O
Mol CH3COOH in 52.0mL of 0.35M solution = 52.0/1000*0.35 = 0.0182 mol CH3COOH
Mol NaOH in 19.0mL of 0.40M solution = 19.0/1000*0.40 = 0.0076 mol NaOH
These will react to produce 0.0076 mol CH3COONa and there will be 0.0182 - 0.0076 = 0.0106 mol CH3COOH remaining in solution unreacted . Total volume of solution = 52.0+19.0 = 71mL or 0.071L
Molarity of CH3COOH = 0.0106/0.071 = 0.1493M
CH3COONa = 0.0076 / 0.071 = 0.1070M
pKa acetic acid = - log Ka = -log 1.8*10^-5 = 4.74.
pH using Henderson - Hasselbalch equation:
pH = pKa + log ([salt]/[acid])
pH = 4.74 + log ( 0.1070/0.1493)
pH = 4.74 + log 0.717
pH = 4.74 + (-0.14)
pH = 4.60.
The answer is (2) 10.0 mol. The equation given is balanced. So the ratio of mol number of compound is the ratio of the number before the compound. The HCl and CO2 ratio is 2:1. So the answer is 10.0 mol.