Answer:
The concentration of methyl isonitrile will become 15% of the initial value after 10.31 hrs.
Explanation:
As the data the rate constant is not given in this description, However from observing the complete question the rate constant is given as a rate constant of 5.11x10-5s-1 at 472k .
Now the ratio of two concentrations is given as

Here C/C_0 is the ratio of concentration which is given as 15% or 0.15.
k is the rate constant which is given as 
So time t is given as

So the concentration will become 15% of the initial value after 10.31 hrs.
Answer:
They are both colorless, odorless, and tasteless. They have the same number of valence electrons too. And unbalanced electrons in their valence shell.
Explanation:
Answer:
Plants will absorb water through their roots and release water as vapor into the air through these stomata. To survive in drought conditions, plants need to decrease transpiration to limit their water loss. Some plants that live in dry conditions have evolved to have smaller leaves and therefore fewer stomata.
Explanation:
Plants will absorb water through their roots and release water as vapor into the air through these stomata. To survive in drought conditions, plants need to decrease transpiration to limit their water loss. Some plants that live in dry conditions have evolved to have smaller leaves and therefore fewer stomata.
Answer:
HF is the limiting reactant
Explanation:
The balanced equation for the reaction is given below:
SiO₂ + 4HF —> SiF₄ + 2H₂O
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Finally, we shall determine the limiting reactant. This can be obtained as illustrated below:
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Therefore, 7.5 moles of SiO₂ will react with = 7.5 × 4 = 30 moles of HF.
From the calculation made above, we can see clearly that it will take a higher amount (i.e 30 moles) of HF than what was given from the question (i.e 5 moles) to react completely with 7.5 moles of SiO₂.
Therefore, HF is the limiting reactant and SiO₂ is the excess reactant.
Answer:
300 mM
Explanation:
In order to solve this problem we need to calculate the line of best fit for those experimental values. The absorbance values go in the Y-axis while the concentration goes in the X-axis. We can calculate the linear fit using Microsoft Excel using the LINEST function (alternatively you can write the Y data in one column and X data in another one, then use that data to create a dispersion graph and finally add the line of best fit and its formula).
The <u>formula for the line of best fit for this set of data is</u>:
So now we <u>calculate the value of </u><u><em>x</em></u><u> when </u><u><em>y</em></u><u> is 1.50</u>: