Answer:
The distance is 
Explanation:
From the question we are told that
The coefficient of static friction is 
The initial speed of the train is 
For the crate not to slide the friction force must be equal to the force acting on the train i.e

The negative sign shows that the two forces are acting in opposite direction
=> 
=> 
=> 
=> 
From equation of motion

Here v = 0 m/s since it came to a stop
=> 
=> 
=> 
Answer:
initial velocity =starting velocity
final velocity=last velocity
keep in mind the fact that velocity is a vector quantity it also has a direction
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately
It is an example of liquid. if thats what you are asking for...
Answer and Explanation:
The ball is bouncing to a height of 1/3 of its previous height this is a type of geometric sequence the total distance can be found by the sum of geometric sequence
For example let the initial height is 243 fit
After one bounce it will reach 243/3 =81 feet
After second bounce 81/3=27 feet
After third bounce 27/3 =9 feet
After fourth bounce 9/3 =3 feet
So a sequence is formed that is 243,81,27,9,3..........
Here 
Sum of infinite GP = 
From this formula we can find the total distance traveled by the ball