The answer will be C, a stopwatch :)
Answer:
<h3>473.8 m/s; 473.8 m/s</h3>
Explanation:
Given the initial velocity U = 670m/s
Horizontal velocity Ux = Ucos theta
Vertical component of the cannon velocity Uy = Usin theta
Given
U = 670m/s
theta = 45°
horizontal component of the cannonball’s velocity = 670 cos 45
horizontal component of the cannonball’s velocity = 670(0.7071)
horizontal component of the cannonball’s velocity = 473.757m/s
Vertical component of the cannonball’s velocity = 670 sin 45
Vertical component of the cannonball’s velocity = 670 (0.7071)
Vertical component of the cannonball’s velocity = 473.757m/s
Hence pair of answer is 473.8 m/s; 473.8 m/s
<span>If the swimmer is swimming perpendicular to the current, it will take her 66m / 0.42 m/s = 157.14 seconds to cross the river. At the same time, the current will be taking her downstream at a rate of 0.32 m/s. So, when she reaches the opposite bank, her total downstream distance traveled will have been 0.32*157.14 = 50.28 meters.</span>
Two major characteristics that change when air is heated and cooled is the density and the direction of the air flow. They change the movement of the air by heated air rises and cooled air doesn't.