Answer:
The correct answer to the following question will be "Period".
Explanation:
The Period seems to be the time deemed necessary for such a perfect cycle of vibration to transfer a particular moment. Because as the amplitude of the wave raises, the wavelength falls.
It is denoted by "T" and its formula will be:
⇒ 
Where, T = Period
F = Frequency
The other given choices are not related to the given circumstances. So that the above would be the right answer.
Answer: 0.6m
Explanation:
Given that:
force = 4.5 N
Work done = 2.7J
Distance moved by the book = ?
Since work is done when force is applied on an object over a distance, apply the formula:
work = force x distance
2.7J = 4.5N x distance
Distance = (2.7J / 4.5N)
Distance = 0.6 m
Thus, the book was moved 0.6 metres far
I think the correct answer from the choices listed above is option A. The kinetic energy after the perfectly inelastic collision would be zero Joules. <span>A </span>perfectly inelastic collision<span> occurs when the maximum amount of kinetic energy of a system is lost. Hope this answers the question.</span>
Answer:
Option (c).
Explanation:
An object when when projected at an angle, will have some horizontal velocity and vertical velocity such that,

is the angle of projection
The horizontal component of the projectile remains the same because there is no horizontal motion. Vertical component changes at every point.
As a projectile falls, vertical velocity increases in magnitude, horizontal velocity stays the same
.
-identifies an electric charge
-it can identify its polarity (positive or negative) if you compare it to a charge that you already know
-can identify the magnitude of a charge (how big of a charge it is)