They are Acids
when acids are in water they dissociate and release H+ ions into the water
while bases release OH- ions
hope that helps
Answer: The octet rule is a chemical rule of thumb that reflects the observation that main group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.
Explanation:
The flask would feel cooler than when the reaction first started.
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of magnesium nitrate and aqueous ammonia (ammonium hydroxide) is given as:

A white precipitate of magnesium hydroxide is formed in the above reaction.
Ionic form of the above equation follows:

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Explanation:

Equilibrium constant of reaction = 
Concentration of NO = ![[NO]=\frac{2.69\times 10^{-2} mol}{1 L}=2.69\times 10^{-2} M](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7B2.69%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D2.69%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of bromine gas = ![[Br_2]=\frac{3.85\times 10^{-2} mol}{1 L}=3.85\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B3.85%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D3.85%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of NOBr gas = ![[Br_2]=\frac{9.56\times 10^{-2} mol}{1 L}=9.56\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B9.56%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D9.56%5Ctimes%2010%5E%7B-2%7D%20M)
The reaction quotient is given as:
![Q=\frac{[NOBr]^2}{[NO]^2[Br_2]}=\frac{(9.56\times 10^{-2} M)^2}{(2.69\times 10^{-2} M)^2\times 3.85\times 10^{-2} M}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNOBr%5D%5E2%7D%7B%5BNO%5D%5E2%5BBr_2%5D%7D%3D%5Cfrac%7B%289.56%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%7D%7B%282.69%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%5Ctimes%203.85%5Ctimes%2010%5E%7B-2%7D%20M%7D)


The reaction will go in backward direction in order to achieve an equilibrium state.
1. In order to reach equilibrium NOBr (g) must be produced. False
2. In order to reach equilibrium K must decrease. False
3. In order to reach equilibrium NO must be produced. True
4. Q. is less than K . False
5. The reaction is at equilibrium. No further reaction will occur. False