Any deviation in the image of an object when light passing from one medium to other is assciated to the phenomenon of refraction.
<h3>What is refraction ?</h3>
It is the deflection from a straight path undergone by a light ray while passing from one medium (such as air) into another (such as glass) in which its velocity is different.
Basically, the light refraction gives the pencil a slight magnifying effect, which makes the angle appear bigger than it actually is, causing the pencil to look crooked.
<h3 />
- After Looking at the pencil from the side of a clear glass or resealable plastic bag filled three-fourths with water, we will see the light bends around the pencil, causing it to look bent in the water.
- When the pencil tilt from side to side, It looks so dramatically broken on looking at it from different angles.
We can magically “fix” the broken pencil by changing where the pencil is positioned in the glass.
Learn more about Light here;
brainly.com/question/22216162
#SPJ1
Answer:
the answers are either a or d
Explanation:
Answer:
here:
Explanation:
The changes in temperature caused by a reaction, combined with the values of the specific heat and the mass of the reacting system, makes it possible to determine the heat of reaction.
Heat energy can be measured by observing how the temperature of a known mass of water (or other substance) changes when heat is added or removed. This is basically how most heats of reaction are determined. The reaction is carried out in some insulated container, where the heat absorbed or evolved by the reaction causes the temperature of the contents to change. This temperature change is measured and the amount of heat that caused the change is calculated by multiplying the temperature change by the heat capacity of the system.
The apparatus used to measure the temperature change for a reacting system is called a calorimeter (that is, a calorie meter). The science of using such a device and the data obtained with it is called calorimetry. The design of a calorimeter is not standard and different calorimeters are used for the amount of precision required. One very simple design used in many general chemistry labs is the styrofoam "coffee cup" calorimeter, which usually consists of two nested styrofoam cups.
When a reaction occurs at constant pressure inside a Styrofoam coffee-cup calorimeter, the enthalpy change involves heat, and little heat is lost to the lab (or gained from it). If the reaction evolves heat, for example, very nearly all of it stays inside the calorimeter, the amount of heat absorbed or evolved by the reaction is calculated.