Answer:
3. Her angular speed increases because her angular momentum is the same but her moment of inertia decreases
Explanation:
II ωi the intial angular momentum of the skater. Her angular momentum changes to If ωf after pulling her arms in.
It must be noted that If is less than II, then it is because her arms now go round not far from the rotation axis which brings down the mementos of inertia.
Angular momentum does not change since torque is O.
Note: the mathematical representations are better written on the attached diagram.
Answer:

Explanation:
As we know by first law of thermodynamics that for ideal gas system we have
Heat given = change in internal energy + Work done
so here we will have
Heat given to the system = 2.2 kJ
Q = 2200 J
also we know that work done by the system is given as

so we have



A descriptive observation may very well be a mixture of both quantitative and qualitative as it can utilize elements of both types. Qualitative deals with the kinds of observations that cannot be measured in numerical form. Quantitative data is just that.
Answer:
It takes 10.5 minutes to kill all the bacteria.
Only 1 cell would remain after 9 minutes.
Explanation:
It will take 1.5 minutes to kill 90% of the cells. So, after 1.5 minutes, only 10% would remain. After 3 minutes, only 1% remain. So, to figure out how long it would take to kill a million cells, we have to multiply 1 million by 0.1 repeatedly until the final value is less than 1 that is because when the value is less than 1, it means there are no more bacteria.
So:
= 0.1
So, you need 10.5 minutes of killing to kill one million cells.
Time taken= 7 x 1.5 minutes = 10.5 minutes.
After 9 minutes you would have:
= 1 cell left
Answer:
The purpose or objective of the electromagnetic spectrum experiment the purpose is to figure out what elements are in the planets’ and the moons’ atmospheres by looking at their absorption spectrums
Explanation:
What is electromagnetic spectrum?
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.
The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 10^25 hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high frequency (short wavelength) end.
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications.
The limit for long wavelengths is the size of the universe itself.
Don't know if this helps or not :)