Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
Answer:
D.-4.798m/s
Explanation:
Greetings !
Given values

Solve for V of the given expression
Firstly, recall the velocity-time equation

plug in known values to the equation

solve for final velocity

Hope it helps!
At stp (standard temperature and pressure), the temperature is T=0 C=273 K and the pressure is p=1.00 atm. So we can use the ideal gas law to find the number of moles of helium:

where p is the pressure (1.00 atm), V the volume (20.0 L), n the number of moles, T the temperature (273 K) and

the gas constant. Using the numbers and re-arranging the formula, we can calculate n:
Answer:
2.5 s, 5 m
Explanation:
The equations for the horizontal and vertical position of Lukalu are:

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:
y(t) = 0
So we find:

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:
