Answer:
Explanation: according to Coulomb's inverse-square law is proportional to the square of distance between them and is given by

where r is the distance between the charges & k is the Coulomb's constant
k=1/(4*ε_0*π)
k=9*10^9
the distance between the charges in this question is d_1
hence the magnitude of the force exerted by q_0 on q_1 is given by

due to location of particle 1 above the particle 0 the direction of force is parallel to y axis and in vector form

Intermolecular forces are forces that keep molecules together. For example, the forces between two water molecules. The stronger the intermolecular forces are, the more "solid" is the matter going to be, meaning that the intermolecular forces are the strongest in solids and weakest in gases.
Make sure not to confuse intERmolecular forces (forces between *molecules*) and intRAmolecular forces (forces between *atoms* that make up a molecule).
Answer:
37357 sec
or 622 min
or 10.4 hrs
Explanation:
GIVEN DATA:
Lifting weight 80 kg
1 cal = 4184 J
from information given in question we have
one lb fat consist of 3500 calories = 3500 x 4184 J
= 14.644 x 10^6 J
Energy burns in 1 lift = m g h
= 80 x 9.8 x 1 = 784 J
lifts required 
= 18679
from the question,
1 lift in 2 sec.
so, total time = 18679 x 2 = 37357 sec
or 622 min
or 10.4 hrs
Answer:
1. <u>F = ma</u> <em>F = 0.2kg * 20m/s² = 4Kg * m/s² =</em> 4N
2. <u>F = ma</u> <em>F - 18Kg * 3m/s² = 54Kg * m/s² =</em> 54N
3. <u>F = ma</u> <em>F = 0.025Kg * 5m/s² =</em> 0.125N
4. <u>F = ma</u> <em>F = 50Kg * 4m/s² =</em> 200N
5. <u>F = ma</u> <em>F = 70Kg * 4m/s² =</em> 280N
6. <u>F = ma</u> <em>F = 9Kg * 9.8m/s² =</em> 88.2N
Explanation:
Hope this helps ! ^^