Tighten the screw clamp over the fitting with a screwdriver, and place another metal screw clamp over the other end of the rubber vacuum line.
Explanation:
Sorry I tried but I do not know the answer but maybe someone else's know and can tell you the answer
Answer:
a, b, c, d
Explanation:
Rutherford’ atomic model is based on the gold foil experiment. In this experiment, beam of alpha rays was bombarded on thin gold foil. He observed that:
Most of the alpha particles passed through thin foil without any deflection.
Few alpha particles deflected by an angle of 90o.
Based on observation, Rutherford concluded that majority of the space inside the atom is empty.
He explained defection of few alpha particles by assuming that most of the mass is concentrated at the nucleus and positively charged.
Therefore, among given, the correct statements are:
The atom contains a positively charged nucleus.
Positive charge is condensed in one location within the atom.
The majority of the space inside the atom is empty space
The mass of an atom is concentrated at the nucleus
Therefore, the correct options are:
a, b, c, d
Answer:
1.209g of MgO participates
Explanation:
In this problem, we have 0.030 moles of MgO that participates in a particular reaction.
And we are asked to solve for the mass of MgO that participates, that means, we need to convert moles to grams.
To convert moles to grams we need to use molar mass of the compound:
<em>1 atom of Mg has a molar mass of 24.3g/mol</em>
<em>1 atom of O has a molar mass of 16g/mol</em>
<em />
That means molar mass of MgO is 24.3g/mol + 16g/mol = 40.3g/mol
And mass of 0.030 moles of MgO is:
0.030 moles MgO * (40.3g/mol) =
<h3>1.209g of MgO participates</h3>
The Answer is D: Reactor products charge huge batteries.