Answer:
The pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Explanation:
Given data:
[OH⁻] = 9.50 ×10⁻⁹M
pOH = ?
Solution:
pOH = -log[OH⁻]
Now we will put the value of OH⁻ concentration.
pOH = -log[9.50 ×10⁻⁹M]
pOH = 8
Thus the pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Basis of the calculation: 100g
For Carbon:
Mass of carbon = (100 g)(0.80) = 80 g
Number of moles of carbon = (80 g)(1 mole / 12g) = 20/3
For Hydrogen:
Mass of hydrogen = (100 g)(0.20) = 20 g
Number of moles of hydrogen = (20 g)(1 mole / 1 g) = 20
Translating the answer to the formula of the substance,
C20/3H20
Dividing the answer,
CH3
The molar mass of the empirical formula is:
12 + 3 = 15 g/mol
Since, the molar mass given for the molecular formula is 30.069 g/mol, the molecular equation is,
C2H6
ANSWER: C2H6
The answer is 100%
let me know if you want an explanation
<u>Answer:</u> The equilibrium concentration of CO is 0.243 atm
<u>Explanation:</u>
We are given:
Initial partial pressure of carbon dioxide = 0.902 atm
As, carbon dioxide is present initially. This means that the reaction is proceeding backwards.
For the given chemical equation:

<u>Initial:</u> 0.902
<u>At eqllm:</u> 3x (0.902-3x)
The expression of
for above equation follows:

We are given:

Putting values in above equation, we get:

So, equilibrium concentration of CO = 3x = (3 × 0.0810) = 0.243atm[/tex]
Hence, the equilibrium concentration of CO is 0.243 atm
Answer:
acquired/harmful
Explanation:
This type of mutation and exposure will cause indefinite problems.