<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Just took the test and the answer is <span>C. 1,314,718.
</span>
The time when the particle is at rest is at 1.63 s or 3.36 s.
The velocity is positive at when the time of motion is at
.
The total distance traveled in the first 10 seconds is 847 m.
<h3>When is a particle at rest?</h3>
- A particle is at rest when the initial velocity of the particle is zero.
The time when the particle is at rest is calculated as follows;
s(t) = 2t³ - 15t² + 33t + 17

The velocity is positive at when the time of motion is as follows;
.
The total distance traveled in the first 10 seconds is calculated as follows;

Learn more about motion of particles here: brainly.com/question/11066673
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.