1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
2 years ago
12

A van is traveling with an initial velocity of 12 m/s. The driver takes a time of 45 seconds to speed up to a velocity of 20 m/s

. How much distance did the van cover during this time?
Physics
1 answer:
Rufina [12.5K]2 years ago
4 0
  • Initial velocity=u=12m/s
  • Final velocity=v=20m/s
  • Time=t=45s

\\ \rm\hookrightarrow Acceleration=\dfrac{v-u}{t}

\\ \rm\hookrightarrow Acceleration=\dfrac{20-12}{45}

\\ \rm\hookrightarrow Acceleration=\dfrac{8}{45}

\\ \rm\hookrightarrow Acceleration=0.1m/s^2

Now

  • Distance=s

\\ \rm\hookrightarrow v^2-u^2=2as

\\ \rm\hookrightarrow (20)^2-12^2=2(0.1)s

\\ \rm\hookrightarrow 400-144=0.2s

\\ \rm\hookrightarrow 256=0.2s

\\ \rm\hookrightarrow s=\dfrac{256}{0.2}

\\ \rm\hookrightarrow s=1280m

You might be interested in
The variation in the pressure of helium gas, measured from its equilibrium value, is given by ΔP = 2.9 × 10−5 cos (6.20x − 3 000
nadya68 [22]

Answer:

The wavelength of this wave is 1.01 meters.

Explanation:

The variation in the pressure of helium gas, measured from its equilibrium value, is given by :

\Delta P=2.9\times 10^{-5}\ cos(6.2x-3000t)..............(1)

The general equation is given by :

\Delat P=P_o\ cos(kx-\omega t)...........(2)

On comparing equation (1) and (2) :

k=6.2

Since, k=\dfrac{2\pi}{\lambda}

\dfrac{2\pi}{\lambda}=6.2

\lambda=1.01\ m

So, the wavelength of this wave is 1.01 meters. Hence, this is the required solution.

6 0
3 years ago
If a rock climber accidentally drops a 52.5-g piton from a height of 325 meters, what would its speed be just before striking th
alex41 [277]
Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.  
So we have 1/2 MV^2 = MGH 
V^2 = 2GH 
V = âš2GH 
V = âš( 2 * 9.8 * 325)  
V = âš 6370
 V = 79.81 m/s
6 0
3 years ago
What does a virus look like
sladkih [1.3K]
Outside to the inside: Capsid, core, genetic material
7 0
3 years ago
Read 2 more answers
Two rigid tanks of equal size and shape are filled with different gases. The tank on the left contains oxygen, and the tank on t
fredd [130]

Answer:

The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.

Explanation:

Given:

Molar mass of oxygen, M_O=32

Molar mass of hydrogen, M_H=2

We know ideal gas law as:

PV=nRT

where:

P = pressure of the gas

V = volume of the gas

n= no. of moles of the gas molecules

R = universal gs constant

T = temperature of the gas

∵n=\frac{m}{M}

where:

m = mass of gas in grams

M = molecular mass of the gas

∴Eq. (1) can be written as:

PV=\frac{m}{M}.RT

P=\frac{m}{V}.\frac{RT}{M}

        as: \frac{m}{V}=\rho\ (\rm density)

So,

P=\rho.\frac{RT}{M}

Now, according to given we have T,P,R same for both the gases.

P_O=P_H

\rho_O.\frac{RT}{M_O}=\rho_H.\frac{RT}{M_H}

\Rightarrow \frac{\rho_O}{32}=\frac{\rho_H}{2}

\rho_O=16\rho_H

∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>

5 0
2 years ago
Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standi
ki77a [65]

Answer:

The lowest possible frequency of sound for which this is possible is 1307.69 Hz

Explanation:

From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.

First, we will determine his distance from the second speaker using the Pythagorean theorem

l₂ = √(2.00²+5.00²)

l₂ = √4+25

l₂ = √29

l₂ = 5.39 m

Hence, the path difference is

ΔL = l₂ - l₁

ΔL = 5.39 m - 5.00 m

ΔL = 0.39 m

From the formula for destructive interference

ΔL = (n+1/2)λ

where n is any integer and λ is the wavelength

n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.

Then,

0.39 = (1+ 1/2)λ

0.39 = (3/2)λ

0.39 = 1.5λ

∴ λ = 0.39/1.5

λ = 0.26 m

From

v = fλ

f = v/λ

f = 340 / 0.26

f = 1307.69 Hz

Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.

5 0
3 years ago
Other questions:
  • In a certain process, the energy change of the system is 250 \rm kJ. The process involves 480 \rm kJ of work done by the system.
    9·1 answer
  • Can someone explain subshell/electron configuration to me?
    14·1 answer
  • Which statements describe how a machine can help make work easier? Select two options.
    12·1 answer
  • Bob can row 14 mph in still water. The total time to travel downstream and return upstream to the starting point is 4 hours. If
    13·1 answer
  • Which bone is located in the thigh or upper hind limb, articulating at the hip or knee?
    9·1 answer
  • oscillating spring mass systems can be used to experimentally determine an unknown mass without using a mass balance. a student
    14·1 answer
  • What feature is similar to all organisms
    5·2 answers
  • Are the refractive index and the speed of light in a vacuum direct propotional or inversley​
    5·1 answer
  • ANSWER ASAP PLEASE!!
    10·1 answer
  • Lgbtq team lots of love
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!