Answer:
Explanation:
Given that,
Frequency of radio signal is
f = 800kHz = 800,000 Hz.
Distance from transmitter
d = 8.5km = 8500m
Electric field amplitude
E = 0.9 V/m
The average energy density can be calculated using
U_E = ½•ϵo•E²
Where ϵo = 8.85 × 10^-12 F/m
Then,
U_E = ½ × 8.85 × 10^-12 × 0.9²
U_E = 3.58 × 10^-12 J/m²
The average electromagnetic energy density is 3.58 × 10^-12 J/m²
Answer:
10.6 mA
Explanation:
t = time interval = 1.00 s
q = magnitude of charge on each ion = 1.6 x 10⁻¹⁹ C
n₁ = number of Na⁺ ions = 2.68 x 10¹⁶
q₁ = charge due to Na⁺ ions = n₁ q = (2.68 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.004288 C
n₂ = number of Cl⁻ ions = 3.92 x 10¹⁶
q₂ = charge due to Cl⁻ ions = n₂ q = (3.92 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.006272 C
i₁ = Current due to Na⁺ ions =
=
= 0.004288 A
i₂ = Current due to Cl⁻ ions =
=
= 0.006272 A
Current passing between the electrodes is given as
i = i₁ + i₂
i = 0.004288 + 0.006272
i = 0.01056 A
i = 10.6 x 10⁻³ A
i = 10.6 mA
The first growth phase (G1): During the G1 stage, the cell doubles in size and doubles the number of organelles.
The synthesis phase (S): The DNA is replicated during this phase. In other words, an identical copy of all the cell’s DNA is made. This ensures that each new cell has a set of genetic material identical to that of the parental cell. This process is called DNA replication.
The second growth phase (G2): Proteins are synthesized that will help the cell divide. At the end of interphase, the cell is ready to enter mitosis.
Answer:

147.45 Hz
Explanation:
v = Speed of sound in water = 1482 m/s
= Speed of whale = 4.95 m/s
Frequency of the wave in stationary condition

Ship's frequency which is reflected back

The difference in frequency is given by





The difference in wavelength is 147.45 Hz