Momentum is mass in motion and only applies to objects in motion. It's a term that describes a relationship between the mass and velocity of an object, and we can see this when it is written in equation form, p = mv, where p is momentum, m is mass in kg and v is velocity in m/s.
Explanation:
The moment of inertia of each disk is:
Idisk = 1/2 MR²
Using parallel axis theorem, the moment of inertia of each rod is:
Irod = 1/2 mr² + m (R − r)²
The total moment of inertia is:
I = 2Idisk + 5Irod
I = 2 (1/2 MR²) + 5 [1/2 mr² + m (R − r)²]
I = MR² + 5/2 mr² + 5m (R − r)²
Plugging in values:
I = (125 g) (5 cm)² + 5/2 (250 g) (1 cm)² + 5 (250 g) (5 cm − 1 cm)²
I = 23,750 g cm²
Answer:
The Balmer series refers to the spectral lines of hydrogen, associated to the emission of photons when an electron in the hydrogen atom jumps from a level
to the level
.
The wavelength associated to each spectral line of the Balmer series is given by:

where
is the Rydberg constant for hydrogen, and where
is the initial level of the electron that jumps to the level n = 2.
The first few spectral lines associated to this series are withing the visible part of the electromagnetic spectrum, and their wavelengths are:
656 nm (red, corresponding to the transition
)
486 nm (green,
)
434 nm (blue,
)
410 nm (violet,
)
All the following lines lie in the ultraviolet part of the spectrum. The limit of the Balmer series, corresponding to the transition
, is at 364.6 nm.
Answer:
The force required will be "300 N".
Explanation:
The given values are:
Mass of object,
m = 300 kg
Acceleration,
a = 1 m/s
Now,
The force will be:
⇒ 
On substituting the values, we get
⇒ 
⇒ 