If the resistor is in series with the rest of the circuit then a is the correct answer. The voltage across the resistor in series with another resistor is

where R is the big resistor and r is the small one and V is the total voltage drop across both. This is called a voltage divider
Answer: 0.5
Explanation:
The modulus of elasticity (called <em>"alargamiento unitario"</em> in spanish)
of a spring is given by the following formula:
Where:
is the original length of the spring
is the elongation of the spring, being
the length of the spring after a force is applied to it.
Then:
Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 
Answer:
54 is the correct answer to this question
The sun is a star (a giant ball of burning gases).