1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
muminat
2 years ago
14

<

Physics
1 answer:
goblinko [34]2 years ago
6 0

Answer:

Explanation:

initial velocity u = 32.7 m /s

final velocity v = 50.3 m /s

displacement s = 44500 m

acceleration a = ?

v² = u² + 2 a s

50.3² = 32.7² + 2 x a x 44500

2530.09 = 1069.29 + 89000a

a .016 m /s²

time taken t = ?

v = u + at

50.3 = 32.7 + .016 t

t = 1100 s

You might be interested in
A 0.25 kg beach ball rolling at a speed of 7 m/s collides with a heavy exercise ball at rest. The beach ball bounces straight ba
svetlana [45]

Answer:

A 0.25 kg beach ball rolling at a speed of 7 m/s collides with a heavy exercise ball at rest. The beach ball bounces straight back with a speed of 4 m/s. That is the change in momentum of the beach ball? What is the impulse exerted on the beach ball? What is the impulse exerted on the exercise ball?

Explanation:

the answer is impulse grenade from fortnite

7 0
3 years ago
the roque requried to turn the crank on an ice cream maker is 4.50 N.m how much work does it take to turn the crank through 300
Alexus [3.1K]

Answer:

the work required to turn the crank at the given revolutions is 8,483.4 J

Explanation:

Given;

torque required to turn the crank, T = 4.50 N.m

number of revolutions, = 300 turns

The work required to turn the crank is given as;

W = 2πT

W = 2 x 3.142 x 4.5

W = 28.278 J

1 revolution = 28.278 J

300 revlotions = ?

= 300 x 28.278 J

= 8,483.4 J

Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J

4 0
2 years ago
Whoever answers correctly gets brainlist!
UNO [17]

Infared = used by police

gamma = short wavelength

radio = largest wavelength

visible = only ones we can see

5 0
3 years ago
Read 2 more answers
A ball rolls over the edge of a platform with only a horizontal velocity. The height of the platform is 1.60m and the horizontal
AysviL [449]

Answer:

v = 46.99 m/s

Explanation:

The velocity of the ball just before it touches the ground, is given by the following formula:

v=\sqrt{v_x^2+v_y^2}           (1)

vx: horizontal component of the velocity

vy: vertical component of the velocity

The vertical component vy is calculated by using the following formula:

v_y^2=v_{oy}^2+2gh   (2)

vy: final velocity

voy: initial vertilal velocity = 0m/s  (because it is a semi parabolic motion)

g: gravitational acceleration = 9.8 m/s^2

h: height = 1.60m

You replace the values of the parameters in the equation (2):

v_y=2(9.8m/s^2)(1.60m)=31.36\frac{m}{s}

vx is calculated by using the information about the horizontal range of the ball:

R=v_o\sqrt{\frac{2h}{g}}    (3)

R: horizontal range of the ball = 20.0 m

You solve the previous equation for vo, the initial horizontal velocity:

v_o=R\sqrt{\frac{g}{2h}}=(20.0m)\sqrt{\frac{9.8m/s^2}{2(1.60m)}}\\\\v_o=35\frac{m}{s}

The horizontal component of the velocity is constant in the complete trajectory, hence, you have that

vx = vo = 35 m/s

Finally, you replace the values of vx and vy in the equation (1):

v=\sqrt{(35m/s)^2+(31.36m/s)^2}=46.99\frac{m}{s}

The velocity of the ball just before it touches the ground is 46.99 m/s

5 0
3 years ago
A 4-kg toy car with a speed of 5 m/s collides head-on with a stationary 1-kg car. After the collision, the cars are locked toget
mihalych1998 [28]

Kinetic energy lost in collision is 10 J.

<u>Explanation:</u>

Given,

Mass, m_{1} = 4 kg

Speed, v_{1} = 5 m/s

m_{2} = 1 kg

v_{2} = 0

Speed after collision = 4 m/s

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

Before collision, the kinetic energy is

\frac{1}{2} m1 (v1)^2 + \frac{1}{2} m2(v2)^2

By plugging in the values we get,

KE = \frac{1}{2} * 4 * (5)^2 + \frac{1}{2} * 1 * (0)^2\\\\KE = \frac{1}{2} * 4 * 25 + 0\\\\

K×E = 50 J

Therefore, kinetic energy before collision is 50 J

Kinetic energy after collision:

KE = \frac{1}{2} (4 + 1) * (4)^2 + KE(lost)

KE = 40J + KE(lost)

Since,

Initial Kinetic energy = Final kinetic energy

50 J = 40 J + K×E(lost)

K×E(lost) = 50 J - 40 J

K×E(lost) = 10 J

Therefore, kinetic energy lost in collision is 10 J.

4 0
3 years ago
Other questions:
  • Explain why the roller coaster’s potential energy is greater at point 1 than at point 4.
    8·2 answers
  • Compared to its mass on Earth, the mass of a 60-kg object on the moon is
    14·1 answer
  • How do you know when electric current is flowing in a lightbulb circuit?
    13·1 answer
  • 6. An object accelerates from rest to 70 m/s in 3.5 s. What is the acceleration of the object?
    7·1 answer
  • A car is traveling at a speed of 38.0 m/s on an interstate highway where the speed limit is 75.0 mi/h. Is the driver exceeding t
    10·1 answer
  • You are driving downhill on a rural road with a 3% grade at a speed of 45 mph. While playing on the side of the road, a child ac
    8·1 answer
  • An object’s mass increases its
    15·1 answer
  • A cannon fires a shell toward a target with a momentum of 6750 kg m/s. This shell moves with a velocity of 150 m/s. Calculate
    14·1 answer
  • The moon Ariel orbits Uranus at a distance of 1.91 x 108 m once every 2.52 days. Use that data to calculate the mass of Uranus.
    15·1 answer
  • A dog is chasing a squirrel. He runs 5 meters to the left and then 3 meters to the right. What is the distance?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!