Answer:
C.I = 0.7608 ≤ p ≤ 0.8392
Step-by-step explanation:
Given that:
Let consider a random sample n = 400 candidates where 320 residents indicated that they voted for Obama
probability 
= 0.8
Level of significance ∝ = 100 -95%
= 5%
= 0.05
The objective is to develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.
The confidence internal can be computed as:

where;
=
= 1.960
SO;






= 0.8 - 0.0392 OR 0.8 + 0.0392
= 0.7608 OR 0.8392
Thus; C.I = 0.7608 ≤ p ≤ 0.8392
<h2>
Answer:
<u><em>
</em></u></h2>
Step-by-step explanation:
Step 1: Multiply the whole number part (1) by the denominator (8).
1 × 8 = 8
Step 2: Add the product from Step 1 (8) to the numerator (4).
8 + 4 = 12
Step 3: Write that result (12) above the denominator. So,

Step 4: The fraction 
Can be reduced by dividing both numerator and denominator by the GCD(12,8) = 4. Thus,

Answer:
B
Step-by-step explanation:

6-7n=29 would be your answer