Answer:
G]ns^2np^5 group 17 (p-block)
G]ns^2np^2 group 14 (p-block)
G]ns^2mf^14 group 16 (f-block)
Explanation:
The outermost electronic configuration of an element shows the group to which it belongs in the periodic table as shown above in the answer. In addition, to that, we can be able to know from its electronic configuration, whether the element is a metal or not.
For instance;
G]ns^2mf^14 is a rare earth metal, G]ns^2np^2 group 14 is a metalloid while G]ns^2np^5 group 17 is a nonmetal.
Answer:
The mass in grams of glucose produced when 132.0 g of CO2 reacts with an excess of water is 90.1 grams
Explanation:
The chemical equation for the reaction is
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
From the reaction, it is seen that 6 moles of H₂O reacts ith 6 moles of CO₂ to produce 1 mole of glucose C₆H₁₂O₆ and 6 moles oxygen gas
The molar mass of CO₂ = 44.01 g/mol
There fpre 132.0 g contains 132.0/44.01 moles or ≅ 3 moles
However since 6 moles of CO₂ produces 1 mole of O₂, then 3 moles of CO₂ will prduce 1/6×3 or 0.5 moles of C₆H₁₂O₆
and since the molar mass (or the mass of one mole) of C₆H₁₂O₆ is 180.2 grams/mole then 0.5 mole of C₆H₁₂O₆ will have a mass of
mass of 1 mole C₆H₁₂O₆ = 180.2 g
mass of 0.5 mole C₆H₁₂O₆ = 180.2 g × 0.5 = 90.1 grams
Mass of glucose produced = 90.1 grams
A ratio of 0.89% w / v or 0.0089 in fraction means that
there is 0.89 weight of NaCl pero volume of solution. Therefore the mass of
NaCl is:
mass NaCl = 0.0089 * 200
<span>mass NaCl = 1.78 grams</span>
The correct answer is B. The concentration of a solution does not decreases when you add more solute to the solvent. Instead, the concentration increases. Concentration is expressed as the amount of solute per unit of solvent. Therefore, increasing the solute, increases this value and increasing the solvent, decreases this value.