To find out how many grams are in 4.65 moles of Al(NO₂)₃
Find out what the molar mass of Al(NO₂)₃ is
Al = 26.98 g/mol Al
N = 14 g/mol N
O = 16 g/mol O
Next, you have to look at the subscripts and figure out which they belong to, in this case:
Al = 26.98 g/mol Al
N₃ = 42 g/mol N₃
O₆ = 96 g/mol O₆
Finally, add the numbers together, so:
26.98 g/mol Al + 42 g/mol N₃ + 96 g/mol O₆ =
164.98 g/mol Al(NO₂)₃
Now, you have 4.65 mol Al(NO₂)₃ so
164.98 g/mol Al(NO₂)₃ × 4.65 mol Al(NO₂)₃ =
767.157 grams of Al(NO₂)₃
Answer:
Amplitude does not effect the wavelength in linear system.
Explanation:
Amplitude:
It is the measure of height from peak to trough.
Wavelength:
It is measure of length from peak to peak.
There is no relation between the amplitude and wavelength but if the system will no more linear then high amplitude can cause the distortion in wave if more frequencies are present. However frequency and wavelength can be related. The wave with higher frequency have shorter wavelength and vise versa.
Frequency:
It is the number of waves passing through a given point in a given time period. It is measure in Hz or s⁻¹
Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
<u>Given:</u>
Calculated density values-
Aluminum = 2.7 g/cm3
Copper = 9.0 g/cm3
Iron = 7.9 g/cm3
Titanium = 4.8 g/cm3
Unknown sample mass = 9.5 g
Sample volume = 2.1 cm3
<u>To determine:</u>
The identity of the unknown sample
<u>Explanation:</u>
'Density' is a physical parameter which can be used to identify the nature of the unknown substance.
Density = Mass/Volume
For the unknown sample
Density = 9.5 g/2.1 cm3 = 4.52 g/cm3
This matches closely with the calculated density of titanium
Ans: The unknown substance is made of titanium