2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
<span>The factors that are used to determine power are:
Voltage,current and the power factor.
</span><span>Power = Voltage x Current x K
Watts = Volts x Amps x Power Factor</span>
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
Answer:
The height (in m) above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet is;
1.835 m and 0.88 m.
Explanation:
Here we have the total height of the man as
1.76 + 0.15 = 1.91 m
The mirror is positioned such that the person can see both the top of his head and his feet
We have the eyes are 0.15 m below the top of the head, therefore by the law of reflection, the incident and reflected angle must be equal.
Hence, the light from the top of his head and then reflected to his eyes forms a isosceles triangle, with the base being the distance of the eye to the top of his head and the top of the triangle is on the mirror.
The height of the mirror is then
1.91 - 0.15/2 = 1.835 m
Similarly, the distance from the eye to the feet is 1.76, therefore, the base of the mirror is positioned at 1.76/2 or 0.88 m above the ground.
T = 2*V₀*sin (α) / g .
t = 2*1600*sin (83.3°) / 9.8 ≈ 2*1600*0.993 / 9.8 ≈ 324 sec or 5.3 min