Answer:
2 /s north
Explanation:
Given that,
Velocity due North is 8 m/s and due south is 6 m/s
We need to find the magnitude and the direction of the resulting velocity.
Let North is positive and South is negative. When two velocities are in opposite direction, they adds up. So,

It is positive. So, it is in North direction.
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
The speed of the 270g cart after the collision is 0.68m/s
Explanation:
Mass of air track cart (m1) = 320g
Initial velocity (u1) = 1.25m/s
Mass of stationary cart (m2) = 270g
Velocity after collision (V) = m1u1/(m1+m2) = 320×1.25/(320+270) = 400/590 = 0.68m/s
Answer:
I'm not sure how to use it using the Series, but it would be the plastic comb
Explanation:
In the winter, it's likely to be cold and the glass would absorb that energy, also making it cold. in order to be able to hold it, you would need something warm, thus making the plastic one the better option as it is less likely to absorb the cold energy