Answer:
The new temperature will be 565.83 K.
Explanation:
Gay Lussac's law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that the pressure of the gas is directly proportional to its temperature. This means that if the temperature increases, the pressure will increase; or if the temperature decreases, the pressure will decrease.
In other words, Gay-Lussac's law states that when a gas undergoes a constant volume transformation, the ratio of the pressure exerted by the gas temperature remains constant:

When an ideal gas goes from a state 1 to a state 2, it is true:

In this case:
- P1= 180 kPa
- T1= 291 K
- P2= 350 kPa
- T2= ?
Replacing:

Solving:

T2= 565.83 K
<u><em>The new temperature will be 565.83 K.</em></u>
Based on Le Chatelier's principle, if a system at equilibrium is disturbed by changes in the temperature, pressure or concentration, then the equilibrium will shift in a direction to undo the effect of the induced change.
The given reaction is endothermic i.e, heat is supplied:
CH4(g) + H2O (g) + heat ↔ 3H2(g) + CO(g)
a) When the temperature is lowered, heat is being removed from the system. The reaction will move in a direction to produce more heat i.e. to the left.
Hence, the pressure of CH4 will increase and equilibrium will shift to the left
b) When the temperature is raised, heat is being added to the system. The reaction will move in a direction to consume the added heat i.e. to the right.
Hence, the pressure of CO will increase and equilibrium will shift to the right
Answer:
127°C
Explanation:
This excersise can be solved, with the Charles Gay Lussac law, where the pressure of the gas is modified according to absolute T°.
We convert our value to K → -73°C + 273 = 200 K
The moles are the same, and the volume is also the same:
P₁ / T₁ = P₂ / T₂
But the pressure is doubled so: P₁ / T₁ = 2P₁ / T₂
P₁ / 200K = 2P₁ / T₂
1 /2OOK = (2P₁ / T₂) / P₁
See how's P₁ term is cancelled.
200K⁻¹ = 2/ T₂
T₂ = 2 / 200K⁻¹ → 400K
We convert the T° to C → 400 K - 273 = 127°C
Answer:
0.0102 mole
Explanation:
Use and solve proportions for these with x as the unknown value.