Answer:
0.21 M
Explanation:
Molarity is the calculation of the solution in which the number of solute per liter of the solutions. It is the most common measurement unit that is used to measure the concentration of the solution.
The molarity is the unit that is used to measure or calculate the volume of the solvent. The amount of solvent is used in the chemical reaction.
The amount of the two solvent in the same quantity is measured by the formula called c1v1 and c2v2.
The concentration of hydrogen can be shown as:
[H+ ] = 3 * 10-5 M
pH can be determined as:
pH = - log [H+ ]
= - log (3 * 10-5)
= 4.53
Thus the pH of solution is 4.53
The mass of magnesium, which has a density of 1.74 g/cm is 504.6 g.
<h3>What is mass?</h3>
Mass is the quantity of matter. Mass can be calculated by multiplying density by volume.
Magnesium is a chemical element with the atomic number 12. It is needed in the body in trace amounts. It can cause malnutrition in the body.
Mass = Density x volume
We know the density and the volume of magnesium.
Density = 1.74
Volume = 290
Density x volume
Putting the value in the equation
1.74 x 290 = 504.6 g
Thus, the mass of magnesium is 504.6 g.
To learn more about mass, refer to the below link:
brainly.com/question/22795877
#SPJ1
The answer is Na-F. The F has highest electronegativity among these elements. So we need to find the element with smallest electronegativity. And this element is Na.
Answer:
b. ΔE rxn is a measure of heat
Explanation:
a. ΔHrxn is the heat of reaction. <em>TRUE. </em>ΔHrxn or change in enthalpy of reaction is per definition the change in heat that is involved in a chemical reaction.
b. ΔErxn is a measure of heat. <em>FALSE. </em>Is the change in internal energy of a reaction
c. An exothermic reaction gives heat off heat to the surroundings. <em>TRUE</em>. An exothermic reaction is a chemical reaction that releases heat.
d. Endothermic has a positive ΔH. <em>TRUE. </em>When a process is exothermic ΔH<0 and when the process is endothermic ΔH>0
e. Enthalpy is the sum of a system's internal energy and the product of pressure and volume. <em>TRUE. </em>Under constant pressure and volume the formula is ΔH = ΔE + PV
I hope it helps!