Answer: 0.113 moles of NaCl are created as a result of decomposing 12 grams of
.
Explanation:
To calculate the moles :

The balanced chemical equation for decomposition of
is:
According to stoichiometry :
2 moles of
give = 2 moles of 
Thus 0.113 moles of
give =
of 
Thus 0.113 moles of NaCl are created as a result of decomposing 12 grams of
.
Urea is highly soluble in water. When it is allowed to dissolve in water in the presence of heat, it will yield ammonia and carbon dioxide. The reaction is shown below:
<span>NH2-CO-NH2 + H2O </span>⇒ 2 NH3 + CO2
As you can observe in the stoichiometric equations, 1 molecule of water can dissolve with 1 mole of urea.
Answer:
32.7 g of Zn
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl₂ + H₂
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂
Next, we shall determine the number of mole of Zn required to produce 0.5 mole of H₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂.
Therefore, 0.5 mole of Zn will also react to produce to 0.5 mole of H₂.
Thus, 0.5 mole of Zn is required.
Finally, we shall determine the mass of 0.5 mole of Zn. This can be obtained as follow:
Mole of Zn = 0.5 mole
Molar mass of Zn = 65.4 g/mol
Mass of Zn =?
Mass = mole × molar mass
Mass of Zn = 0.5 × 65.4
Mass of Zn = 32.7 g
Thus, 32.7 g of Zn is required to produce 0.5 mole of H₂.
Answer:
4 × 10 g
Explanation:
Step 1: Write the balanced equation
2 H₂(g) + O₂(g) ⇒ 2 H₂O(I)
Step 2: Calculate the moles corresponding to 4 g of H₂
The molar mass of H₂ is 2.02 g/mol.
4 g × 1 mol/2.02 g = 2 mol
Step 3: Calculate the moles of H₂O produced from 2 moles of H₂
The molar ratio of H₂ to H₂O is 2:2. The moles of H₂O produced are 2/2 × 2 mol = 2 mol.
Step 4: Calculate the mass corresponding to 2 moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
2 mol × 18.02 g/mol = 4 × 10 g