Answer:
The answer to your question is 242 ml
Explanation:
Data
HI 0.211 M Volume = x
KMnO₄ 0.354 M Volume = 24 ml
Balanced Chemical reaction
12HI + 2KMnO₄ + 2H₂SO₄ → 6I₂ + Mn₂SO₄ + K₂SO₄ + 8H₂O
Process
1.- Calculate the moles of KMnO₄ 0.354 M in 24 ml
Molarity = moles / volume (L)
moles = Molarity x volume (L)
moles = 0.354 x 0.024
moles = 0.0085
2.- From the balanced chemical reaction we know that HI and KMnO₄ react in the proportion 12 to 2. Then,
12 moles of HI --------------- 2 moles of KMnO₄
x --------------- 0.0085 moles of KMnO₄
x = (0.0085 x 12)/2
x = 0.051 moles of HI
3.- Calculate the milliliters of HI 0.211 M
Molarity = moles/volume
Volume = moles/molarity
Volume = 0.051/0.211
Volume = 0.242 L or Volume = 242 ml
Answer:
we need 6.0 moles of zinc (Zn)
Explanation:
Step 1: Data given
Number of moles ZnO produced = 6.0 moles
Step 2: The balanced equation
2 Zn + O2 → 2 ZnO
For 2 moles Zinc we need 1 mol Oxygen to produce 2 moles Zinc oxide
Step 3: Calculate moles zinc
For 2 moles Zn we need 1 mol O2 to produce 2 moles ZnO
For 6.0 moles 2nO produced, we need 6.0 moles of zinc (Zn) and 3.0 moles of O2 to react.
Answer:
The ideal gas law can be used in stoichiometry problems in which chemical reactions involve gases. Standard temperature and pressure (STP) are a useful set of benchmark conditions to compare other properties of gases. At STP, gases have a volume of 22.4 L per mole.
Answer: d
Explanation: I got it right