Answer:
counterclockwise

Explanation:
= Small drive wheel radius = 2.2 cm
= Angular acceleration of the small drive wheel = 
= Radius of pottery wheel = 28 cm
= Angular acceleration of pottery wheel
As the linear acceleration of the system is conserved we have

The angular acceleration of the pottery wheel is
.
The rubber drive wheel is rotating in clockwise direction so the pottery wheel will rotate counterclockwise.
= Initial angular velocity = 0
= Final angular velocity = 
t = Time taken
From the kinematic equations of linear motion we have

The time it takes the pottery wheel to reach the required speed is 
Answer is D.
Speed:
Use relative speed to simplify the situation. Since the trains are moving in opposite directions, you can add the speeds and pretend the first train is stationary (moving at 0m/s) and the second train is moving at 50m/s.
Distance:
The front of the second train needs to travel 120m to get from the front to the back of the first train. When the front of the second train is at the back of the first train, the back of the second train is still 10m in front of the first train. The back therefore has to travel 130m to clear the first train. The total distance over which the trains are overlapping in this scenario is therefore 120 + 130 = 250m.
You have speed and you have distance so now just calculate time:
v = d / t
50 = 250 / t
t = 5s
This is True, cars with the same velocity must have the exact same speed.
B. Decreases
Why: Because the longer the wavelength the lower the frquency. The shorter the wavelength the higher the frequency.
Answer:
1.00 m/s^2
Explanation:
The problem can be solved by using Newton's second law:

where
F is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, F=35 N (the force applied by Amber) and

is the mass of the wagon + the brother, so the acceleration of the wagon and the brother is
