The initial velocity of a car that accelerates at a constant rate of 3m/s² for 5 seconds is 12m/s.
CALCULATE INITIAL VELOCITY:
The initial velocity of the car can be calculated by using one of the equation of motion as follows:
V = u + at
Where;
- V = final velocity (m/s)
- u = initial velocity (m/s)
- a = acceleration due to gravity (m/s²)
- t = time (s)
According to this question, a car accelerates at a constant rate of 3 m/s² for 5 seconds. If it reaches a velocity of 27 m/s, its initial velocity is calculated as follows:
u = v - at
u = 27 - 3(5)
u = 27 - 15
u = 12m/s.
Therefore, the initial velocity of a car that accelerates at a constant rate of 3m/s² for 5 seconds is 12m/s.
Learn more about motion at: brainly.com/question/974124
Answer: the average speed of the rat from the information given above is 0.7m/s
Explanation:
position is given as
x(t) = pt² + qt
finding the diffencial of x(t) with respect to t, we have
d(x(t))/dt = 2pt + q
we substitute the p = 0.36m/s² and q= -1.10 m/s
d(x(t))/dt = 2(0.36)t + (-1.10)
so, at t= 1s
d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s
at t= 4s
d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s
To find the average speed,
average speed = (V1 + V2)/ 2
average speed = (1.78 + (-0.38))/2 = 0.7m/s
Hello!
In terms of an arc length, radians is the measurement of an arc length in terms of the original radius. This arc length is 2.5 radians, so we multiply it by our original radius.
2.5(6)=15
Therefore, the arc length is 15 meters.
I hope this helps!
The difference between the above velocities is that they exist in opposite direction of each other. or it can be said that they are negative vectors of each other.
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.