"Fig is attacted with answer"
Answer:
a) d = 33.72 m
b)
= 26 m/s
c) β = 71.08°
Explanation:
a)
When an object is thrown into the air under the effect of the gravitational force, the movement of the projectile is observed. Then it can be considered as two separate motions, horizontal motion and vertical motion. Both motions are different, so that they can be handled independently.
Given data:
time = t = 4.00 s
Height = h = 20 m
Angle = θ = 60°
Horizontal distance = d = ?
Using 2nd equation of motion

-20 =
(4) + 0.5(-9.8)(4)²
(4) = 58.4
= 14.6 m/s
This is vertical component of velocity when the ball is on the roof. To calculate the Final velocity and horizontal component, we use
=
/ sinθ
= 14.6 / sin 60
= 16.86 m/s
=
cosθ
= 16.86 cos 60
= 8.43 m/s
To calculate the horizontal distance
d =
t
d = (8.43)(4)
d = 33.72 m
b)
We know the values of Landing angle, height of roof, time of flight. In part a, We calculate the landing velocity of the ball and also its horizontal and vertical component. As the ball followed the projectile path, and we know that in projectile motion the horizontal component of the velocity remain constant throughout his motion. So there is no acceleration along horizontal path.
So,
= 
but the vertical component of velocity vary with and there is an acceleration along vertical direction which is equal to gravitation acceleration g.
So,
g = (
-
) / t
9.8 = 14.6 -
) / 4
= 24.6 m/s
= 
= 
= 26 m/s
c)
cos β =
/ 
β = cos⁻¹ (8.43 / 26)
β = 71.08°
Answer:
vector of zero magnitude
Explanation:
The displacement is a vector magnitude, therefore, in addition to being a module, it has direction and sense.
In this case it moved 350 m and then returned the same 350 m, so the total displacement is zero.
If we draw the vector, one has a directional direction to the right and the other direction to the left, therefore when adding the two vectors gives a vector of zero magnitude
Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
Answer: it can be considered a genetic mutation with a history of a Golden Retriever in their blood but it is very rare. and there our some black retrievers you can buy too. i hope i helped
Explanation:
Answer:60 gm
Explanation:
Given
initial velocity of ball 
Force exerted by racquet 
time period of force 
final velocity of ball 
Racquet imparts an impulse to the ball which is given by


