To solve this problem, you will have to first find how many US Dollars are in 1 Euro. Upon looking this up, I see that currently 1 Euro is worth 1.23 US Dollars. Next, you must calculate how many liters are in a gallon. Looking this up shows that 1 liter is equal to 0.264 gallons.
Since 0.264 is not a whole gallon and we are asked to find the price per gallon, we should next calculate how many liters can fit in a gallon. To do this, we will divide 1 by 0.264, which gives us 3.78. This tells us that 3.78 liters will fit into a gallon.
The cost of 1L of gas in euros is 1.50 Euros. Since we need 3.78L to equal 1 gallon, we can calculate the cost of this to be:
3.78 * 1.50 = €5.67
Earlier we determined that 1 euro is worth 1.23 US Dollars. Our final step is to convert our €5.67 per gallon to dollars per gallon. To do this, we simply have to multiply 5.67 by 1.23. This gives us $6.97.
So, our answer is that the cost is $6.97 per gallon.
Hopefully this is correct and makes sense to you. This is how I would approach the question.
Answer:
51/200
Step-by-step explanation:
To write a decimal as a fraction, you have to make the decimal the numerator, and put a multiple of ten with that number of zeroes in the denominator:
0.255 = 255/1000
Then we simplify
51/200
Hello! The answer would be,
38.4
Since if you do 24x0.6 you would get 14.4 which then you would add
14.4 with 24 and get 38.4
Hope I've helped and feel free to ask me questions!
Sincerely, Kaylie :)
Answer:
Step-by-step explanation:
Consider the graphs of the
and
.
By equating the expressions, the intersection points of the graphs can be found and in this way delimit the area that will rotate around the Y axis.
then
o
. Therefore the integration limits are:
and 
The inverse functions are given by:
and
. Then
The volume of the solid of revolution is given by:
![\int\limits^{64}_ {0} \, [2\sqrt{y} - \frac{y}{4}]^{2} dy = \int\limits^{64}_ {0} \, [4y - y^{3/2} + \frac{y^{2}}{16} ]\ dy = [2y^{2} - \frac{2}{5}y^{5/2} + \frac{y^{3}}{48} ]\limits^{64}_ {0} = 546.133 u^{2}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B64%7D_%20%7B0%7D%20%5C%2C%20%5B2%5Csqrt%7By%7D%20-%20%5Cfrac%7By%7D%7B4%7D%5D%5E%7B2%7D%20%20dy%20%3D%20%5Cint%5Climits%5E%7B64%7D_%20%7B0%7D%20%5C%2C%20%5B4y%20-%20y%5E%7B3%2F2%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%7D%7B16%7D%20%5D%5C%20%20dy%20%3D%20%5B2y%5E%7B2%7D%20-%20%5Cfrac%7B2%7D%7B5%7Dy%5E%7B5%2F2%7D%20%2B%20%5Cfrac%7By%5E%7B3%7D%7D%7B48%7D%20%5D%5Climits%5E%7B64%7D_%20%7B0%7D%20%3D%20546.133%20u%5E%7B2%7D)
Answer:
No, he is not correct because the constant in his answer should have been 21 not 7.
Step-by-step explanation:

Therefore, the correct answer is the fourth; he should have put 21.