Answer:
1.26 secs.
Explanation:
The following data were obtained from the question:
Force (F) = 20 N
Extention (e) = 0.2 m
Mass (m) = 4 Kg
Period (T) =.?
Next, we shall determine the spring constant, K for spring.
The spring constant, K can be obtained as follow:
Force (F) = 20 N
Extention (e) = 0.2 m
Spring constant (K) =..?
F = Ke
20 = K x 0.2
Divide both side by 0.2
K = 20/0.2
K = 100 N/m
Finally, we shall determine the period of oscillation of the 4 kg object suspended on the spring. This can be achieved as follow:
Mass (m) = 4 Kg
Spring constant (K) = 100 N/m
Period (T) =..?
T = 2π√(m/K)
T = 2π√(4/100)
T = 2π x √(0.04)
T = 2π x 0.2
T = 1.26 secs.
Therefore, the period of oscillation of the 4 kg object suspended on the spring is 1.26 secs.
The force is being pulled my the gravity or it could be a third party thing like a black hole you feel me
Answer:
Photosynthesis
Explanation:
This process occurs in presence of sunlight, water, minerals, chlorophyll in autotrophs
Displacement is the area under the velocity/time graph. So for example this object's displacement in the first 3 seconds is (1/2)(3sec)(12.5 m/s)= 18.75m. (and then it starts backing up, displacement decreasing, after 3sec when velocity is negative).
But This object is never speeding up. Its velocity is smoothly decreasing at (25/6) m/s^2 (the slope of the graph). So the answer to the question is actually zero.