Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
Answer:
96 m
Explanation:
Given,
Initial velocity ( u ) = 4 m/s
Final velocity ( v ) = 20 m/s
Time ( t ) = 8 s
Let Acceleration be " a ".
Formula : -
a = ( v - u ) / t
a = ( 20 - 4 ) / 8
= 16 / 8
a = 2 m/s²
Let displacement be " s ".
Formula : -
s = ut + at² / 2
s = ( 4 ) ( 8 ) + ( 2 ) ( 8² ) / 2
= 32 + ( 2 ) ( 64 ) / 2
= 32 + ( 2 ) ( 32 )
= 32 + 64
s = 96 m
Therefore, it travels 96 m in time 8 s.
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
I'm going to say false hope that helped