Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.
Answer:
The magnitude of the voltage is
and the direction of the current is clockwise.
Explanation:
Given that,
Number of turns = 9
Magnetic field = 0.5 T
Diameter = 3 cm
Time t = 0.14 s
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the emf
Using formula of emf




Negative sign shows the direction of current.
Hence, The magnitude of the voltage is
and the direction of the current is clockwise.
Answer:
Clouds are made up of tiny water droplets. ... As more and more droplets join together they become too heavy and fall from the cloud as rain. Warm air can hold more moisture than cool air. When the warmer air is cooled and the moisture condenses, it often rains more heavily.
Explanation:
hope it helps
Answer:
Time= 1/frequency
=1/100
=0.01
Explanation: