This problem uses the relationships among current
I, current density
J, and drift speed
vd. We are given the total of electrons that pass through the wire in
t = 3s and the area
A, so we use the following equation to to find
vd, from
J and the known electron density
n,
so:

<span>The current
I is any motion of charge from one region to another, so this is given by:
</span>

The magnitude of the current density is:

Being:

<span>
Finally, for the drift velocity magnitude vd, we find:
</span>
Notice: The current I is very high for this wire. The given values of the variables are a little bit odd
Explanation:
The general equation of an AC current is given by :

Where
I₀ is the peak value of current
is angular frequency

So,

We know that,

So, the frequency is 50 Hz and the maximum rms value of current is 14.14 A.
Answer:
Explanation:
1. They have different wavelengths - Because These radiations form a spectra that differs by the size of the wavelength.
2. They have different Frequencies (f) that is frequency = 1/ wavelength
(f = 1/wavelength)
3. They propagate at different speed though a non vacuum media (non vacuum media affect the speed based on the wavelength)
Answer: 8 or 9
Explanation: they are so many ocean water in the world