Answer:
27.95[kW*min]
Explanation:
We must remember that the power can be determined by the product of the current by the voltage.

where:
P = power [W]
V = voltage [volt]
I = amperage [Amp]
Now replacing:
![P=110*8.47\\P=931.7[W]](https://tex.z-dn.net/?f=P%3D110%2A8.47%5C%5CP%3D931.7%5BW%5D)
Now the energy consumed can be obtained mediate the multiplication of the power by the amount of time in operation, we must obtain an amount in Kw per hour [kW-min]
![Energy = 931.7[kW]*30[days]*10[\frac{min}{1day} ]=279510[W*min]or 27.95[kW*min]](https://tex.z-dn.net/?f=Energy%20%3D%20931.7%5BkW%5D%2A30%5Bdays%5D%2A10%5B%5Cfrac%7Bmin%7D%7B1day%7D%20%5D%3D279510%5BW%2Amin%5Dor%2027.95%5BkW%2Amin%5D)
Answer:
True. The two laws of thermal radiation state; 1) "Each square meter of a hotter object
Explanation:
K = 1/2mv^2 of kinetic energy. The change in the object's kinetic energy is equal to the net work performed on it.
<h3>What causes the kinetic energy to change?</h3>
Equations. Mass and the square of the velocity are directly related to translational kinetic energy. The difference between the end and starting kinetic energies is known as change in kinetic energy.
<h3>In solar panels, is there kinetic energy?</h3>
employing semiconductor-cell-based panels. technique that uses solar thermal systems to store solar energy. This heat is used directly or transformed into concentrated solar power, or the sum of the potential energy and kinetic energy of an object or system, and electricity.
Learn more about kinetic energy here:
brainly.com/question/26472013
#SPJ4
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>