Answer:
The molar mass of:
Helium = 4.00 g/mol
Potassium = 39.0983 g/mol
Manganese = 54.94 g/mol.
Boron = 10.81 g / mol
Explanation:
Helium = 4.00 g/mol
Potassium = 39.0983 g/mol
Manganese = 54.94 g/mol.
Boron = 10.81 g / mol
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
<em>C. Potential energy</em>
Explanation:
Kinetic energy and gravitational potential energy are both forms of potential energy. Potential energy is stored energy, when an object is not in motion it has stored energy. When an object is an motion it has kinetic energy. An object posses gravitational potential energy when it is above or below the zero height.
I believe that B is the correct choice out of the answers given.
Hope this helps and please enjoy Brainly! If you liked my answer and got the question right please name my answer "Brainliest" Thank you - ZeusROX