Heat= latent heat of fusion+sensible heat+ latent heat of vapourization
=(79.7*5)+(5*100*1)+(540*5)
=3598.5 cal
Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
Answer:
Explanation:
Hello!
In this case, considering the Gay-Lussac's law which describes the pressure-temperature behavior as a directly proportional relationship by holding the volume as constant, we write:
Whereas solving for the final temperature T2, we get:
Thus, we plug in the given data (temperature in Kelvins) to obtain:
Best regards!
Explanation:
Used to separate one reactant or product from another
If it's helpful ❤❤
THANK YOU